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derived by assuming that the resonances are those of the single
rings. This leads to the resonance frequencies
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where e is the effective dielectric constant of the single microstrip
line of the same width w as the resonator has. As the field distribu-
tions in Fig. 3 show, (5) should be at least a first approximation
for the resonance frequencies, because the resonances are mainly
those of the single rings. Fig. 4 shows that (5) is quite a good ap-
proximation, especially the growing difference between fi and fa;
with growing distance, s is described quite well. Up to the fifth higher
order resonance (n = 5, m = 5), the accuracy of (5) is better than
3 percent for all resonators which have been examined (0.05 cm < s
< 0.5 cm, Polyguide material, ¢ = 2.32, b = 0.156 cm), whereas
the agreement between (4) and the experimental results is not so
good (accuracy of about 5 percent for fi and about 9 percent for fs,
m =4,n = 4,and s = 0.5 cm).

As has been shown in Section I1, the unrolled double-ring resonator
is the straight double-line resonator of different line lengths as
shown in Fig. 1. So the n-)\,resonance frequencies of the straight
double-line resonator should be an approximation for the resonance
frequencies of the double-ring resonator. Fig. 5 shows the comparison
between the n+\,-resonance frequencies of the straight double-line
resonator and the measured resonance frequencies of the double-
ring resonators. The agreement between theory and experiment is
excellent for all values of s, as long as the mode numbers n,m are
small (n,m < 3). The deviation between theory and experiment
increases with the increasing value of n,m. This is due to the fact that
with larger n,m (meaning with increasing resonance frequencies)
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Fig. 5. Resonance frequencies of the double-ring resonator as a func-
tion of the distance s between the rings. calculated by (3), ©
experimental results. Resonator dimensions as in Fig. 4. ’
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the difference Al of the circumferences of the two rings becomes of
the order A,/2, which leads to a bad approximation of the double-
ring resonator by the straight double-line resonator.

In conclusion, as far as we think, the double-ring resonator princi-
pally is not a good arrangement to measure the phase velocities of
the even and the odd modes of a coupled microstrip line. Only in
the case of very closely coupled lines can it be used to measure
vphe and Vpno, for in this case all three described theories are good
approximations for the resonance frequencies and, e.g., (4) can be
used to measure e and eqr0. Furthermore the mean circumference
of the resonator in this case should be larger than 5\, to avoid the
influence of the curvature of the lines on the resonance frequencies
(see, e.g, [571).
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A Coupled-Line Model for Dispersion in
Parallel-Coupled Microstrips

HERBERT J. CARLIN, FELLOW, IEEE, AND
PIER P. CIVALLERI, MEMBER, IEEE

Abstract—A new circuit model is derived for parallel-coupled
microstrip consisting of two separate pairs of coupled lines. Each
pair consists of a homogenoeus TEM line coupled to a homogeneous
TE line. One pair represents the hybrid even mode, the other rep-
resents the odd mode. Data calculated from the model are compared
with experimental dispersion data for various parallel-coupled micro-
strip geometries. Agreement is excellent.

The procedure for deriving the equivalent circuit is an example of
a general technique for using coupled lines to model longitudinally
uniform but transversely inhomogeneous lossless waveguide.

The representation of fields in longitudinally uniform but trans-
versely inhomogeneous metallic-bound waveguides by the use of an
infinite number of coupled TE and TM transmission lines was first
introduced by Schelkunoff [1]. More recently, it was shown that by
appropriately truncating the Schelkunoff representation, one ean ob-
tain practical models consisting of a finite number of coupled lines,
from which the propagation functions of the structure can be approxi-
mated [2]. Moreover, even in cases in which the Schelkunoff param-
eters cannot be easily calculated, a practical coupled-line model can
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SHORT PAPERS

still be constructed on the basis of appropriate physical intuition and
suitable use of experimental data. For example, a pure TEM coupled
to a TE line was recently successfully used as a model to describe dis-
persion in a microstrip [3].

In this short paper, we present a coupled-line model for a parallel-
coupled microstrip. The model has a clear physical basis, is eoncep-
tually very simple, can be readily generalized by the addition of more
coupled lines in the equivalent circuit to approximate higher order
modes, and stems from a basic technique which can be applied to a
wide variety of propagating systems. The model is shown in Fig. 1.
Each of two TEM transmission lines representing the low-frequency
even mode (index ¢) and the low-frequency odd mode (index o),
respectively, is coupled with a different TE line; each pair of TE-
TEM coupled lines is separate, i.e., uncoupled to the other pair.

To justify the assumption of this model at the outset, we can make
the following remarks.

1) The microstrip can be thought of as enclosed in a rectangular
metallic box; or a shielded enclosure with large dimensions compared
to dielectric thickness may actually be present. The dimensions of
the box are actually parameters of the approximation and do not
necessarily correspond to a physical shield.

2) In a transversely homogeneous longitudinally uniform metallic-
bound structure, all TE, TM, and TEM modes are uncoupled. In this
particular problem, the TM mode is not involved.

3) Since the microstrip is magnetically homogeneous, it is reason-
able to assume that all modes are still magnetically uncoupled.

4) Electric coupling in the microstrip will take place mostly be-
tween the fundamental TEM modes and the lowest higher modes
‘which, in the empty rectangular waveguide, are just the TE; and
the TEq, the former with the even TEM, the latter with the odd
TEM (see Fig. 1).

These points are obviously of a heuristic nature: the validity of the
model will be demonstrated by comparison with experimental results.

The series-impedance network and the shunt-admittance network
per unit length of both pairs of coupled lines are represented by the
following matrices:

whe 0+ 0 O
0 w | 0 0
Z(p) = g p )
0 0 E Iloho 0
0 0 | 0
€060 €c€o
s —k, 0 0
he (he)112
€€ _ i
— 2(—h;)_172 €0 0 0
Y(p) = p
€o€o €€
0 _— —k,
0 2 ot
€o€o .
0 0 —ko ()1 &€
0 0 i 0 0
0 Kcez/ Mo g 0 0
+ ; p (2)
0 0 i 0 0
0 0 |0 Ko/u

In (1) and (2), p = ¢ + jw is the complex frequency; po and ¢, are
the constitutive constants of free space; & and & are the effective
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Fig. 1. Ooupled—line’ model for parallel-coupléd microstrips, showing
even and odd coupling networks. :

static dielectric constants of the even and the odd modes, respectively;
K.. and K, are the cutoff wavenumbers of the uncoupled TE;, and
TEx lines, respectively. h, and ho are dimensional parameters
taking into account the microstrip transverse section geometry;
ks and k. are the capacitive coupling coefficients. The per-unit
length circuits shown in Fig. 1 correspond to (1) and (2).

By solving the secular equation

det [Z(p)Y(p) — v 4] =0

where 11 is the four-rowed identity matrix, and taking into account
the definition of the effective dielectric constant

€off (p) = 'Y2 (p) /eollop2

one obtains for the previous quantity the following expression:
ot (P)1,2 = & + (Kelv?/2p%) £ [(Kefoot/4pt) + k2e2 ]2 (3)

where v, is the velocity of propagation of electromagnetic waves in
free space; index ¢ can take the values ¢ or o, depending on whether
the mode is even or odd; and indices 1 and 2 refer to the choice of the
plus or minus sign, respectively; for the square root. The plus sign
corresponds to the modes that propagate down to de. The other pair
of modes with the minus sign (index 2) are cut off at a finite fre-
quency. Equation (3) has the same form already found for a single
microstrip [37], and this suggests that the same techniques can be
used to determine the unknown constants ke, ko, K., and K.

The coupling coefficients k. and k, are determined from the
condition that at infinite frequency all of the wave energy is con-
centrated in the substrate of relative dielectric constant . Thus,
taking the limit of (3), p — o, i.e., cotf* (© )1 = e, ’

k, = (fa - E’L) /El' (4:)

The cutoff wavenumbers are determined by the semiempirical
formula given in [3]

Ko2 = (ki/R)[(27)*/12GH*1e;(Z.,/376.7)>
where
R = [2(7)* —1]2/6 (6)
G, = 0.500 + 0.001 Z,3? (7)

and Zae = Zoe/2, Zao = 2700, where Zo, and Zy, are the even and odd
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static characteristic impedances of the coupled microstrips [4]. The
dielectric substrate thickness is H.

The previous considerations were used to obtain circuit models of
the microstrip structures whose dispersion was measured and re-
ported by Gould and Talboys [5]. The results comparing the experi-
mental data of [5] and the dispersion calculated from our circuit
model are shown in Fig. 2. For each set of microstrip dimensions
labeled by a number, letters ¢ and b refer to the dispersive odd and
even TEM ! modes, respectively, for that geometry as calculated
from (3) using the plus sign, and with » = jw. The geometric and
static data for the specific microstrips considered, taken from [4] and
[5], are presented in Table I. The cutoff modes which are paired
with the dispersive TEM modes are not shown in Fig. 2 since they
are strongly attenuated over the frequenecy band shown; their
cutoff frequencies are easily calculated from (3) as

fc, = [K“’Uo/zﬂ'(l —_ ki2)“2€ill2:|. (8)

Since the parameters of the approximation are based on the funda-
mental mode, this equation should probably be used with some cau-
tion. It has not been experimentally verified.
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Fig. 2. Measured and calculated effective dielectric constant of TEM

dispersive odd and even modes of parallel-coupled microstrips (see
Table I for physical dimensions).

TABLE I

" PARAMETERS OF PARALLEL-COUPLED MICROSTRIPS (AFTER
GETSINGER [4])

Line | Mode |[Static Impedancea Eff, Diel.Const. b W/H S/H H
Q atd.c. mm.

la odd 46.8 5.95

ib even 59.4 7.40 0.86 | 1.12 |0.630

2a odd 44.0 5.70

2b even 64.6 1.30 0.80 | 0.69 [0.630

3a | odd 46.6 5.25

b even 110.9 6. 60 0.30 | 0.19 {0.630

Notes: Column a calculated by the MsTRIP program using ¢ =
10.0. Column b determined by extrapolation of experimental curves
to zero frequency.

1 These are not true TEM modes since they have a longitudinal Hcom-
ponent, but they propagate 1o dc and for convenience are termed ‘‘dis-
persive TEM."’
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TABLE II

TE Curorr WAVENUMBERS OF PARALLEL-CoUuPLED MICROSTRIPS
(Opp, TEy; Even, TE,)

Line Mode | K =7/% x %/H
- (meters)~! | (mm.)
la odd 2066.6 1.52 2.41
1b even 765.7 4.10 6.50
2a odd 2061.6 1.52 2.41
2b even 834.9 3.76 | 5,96
3a odd 2233.1 1,41 2.24
3b even 1391.9 2.26 3.60

The cutoff wavenumbers of the TE lines used in the model of the
microstrips of Fig. 2 are reported in Table II. These numbers, K.,
and K., are parameters of the approximation and result from the
assumption of using TEy and TEy as higher coupling modes. Thus
they define the width and height of a hypothetical enclosing shield
and, in effect, yield a plausible estimate of equivalent shield dimen-
sions associated with the TE,y, TEy cutoff wavenumbers. Thus from
Tables I and II the equivalent height parameter (z/H, odd mode) is
about 2.3 H for all geometries. The width parameter (z/H, even
mode) varies from 6.5 H to 3.6 H (1.8/1), but note that S/H (S1is
conductor strip separation) varies over a 5.9/1 range. The substrate
thickness H is 0.630 mm for all geometries.

In any case, just as in the dielectric loaded round guide [2],
dielectric loaded rectangular guide [67, and single-strip microstrip
[37], the coupled-line equivalent circuit gives a simple physical model
with excellent experimental agreement for the dispersion properties
of a parallel-coupled microstrip. We believe this further demonstrates
that the coupled-line representation has broad applicability to a wide
variety of longitudinally uniform, transversely inhomogeneous
propagating structures.
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The Phase Shift Through Symmetrical 3-Port Circulators

G. RIBLET, MEMBER, IEEE

Abstract—Simple approximate formulas are derived for the phase
shift through matched circulators—with and without transformer
coupling—using expressions for the eigenadmittances Yo, Y_;, and
Y, which have recently been proposed. These formulas allow one
to predict the phase shift from measurements of the VSWR in
one case and from a knowledge of the transformer admittance V
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